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reported for perfect and mosaic crystals. In particular 
it is shown, following Werner & Arrott (1965), that for 
mosaic crystals, contrary to that for perfect crystals, 
the condensation effect is compensated by a loss of 
reflectivity of the same factor. 

In conclusion, this experiment, on one hand, con- 
stitutes a verification of some predictions of the dyn- 
amical theory of neutron diffraction, and, on the other 
hand, opens interesting perspectives to increase the 
neutron intensities in the diffractometry of small 
biological samples. 
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For unitary, normalized and neutron structure factors the equation" 

0 = ~ A(h, m)F(m)F(h- m) 

with 
A(h,m) = F(m, fll l)F(h - m, fl12)F(h, f121flEE) - F(m, flE1)F(h - m, flE2)F(h, fl l lf112) 

is valid, where the F(m, fluv) are the form factors of arbitrary artificial density functions fluv, which are not 
more extensive than a sphere of diameter equal to the minimum atomic distance of the structure. 

Since the early days of X-ray crystallography many 
attempts have been made to find procedures for the 
formulation of structure-factor relations, because these 
can be used as determinantal relations for the un- 
known phases and hence for structure analysis by 
direct methods. 

A formalism to derive structure-factor equations, 
which are exactly valid for arbitrary crystals with 
known chemical content, was first developed by Woolf- 
son (1958) by generalizing the equation of Sayre (1952). 
The multiple sums of these equations, which make 
practical application difficult, disappear if one replaces 
in Woolfson's theory the generating mappings, QJ(x), 
j = 1,2,..., of the scattering density, p(x), by linear com- 
binations of Dvl~Dv20, v = 1,2,..., where Dr1 and Dv 2 
are differential operators (Rothbauer, 1975, 1976). 

In the following such a procedure is applied to a 
practical important degenerate case. 

The equation 

The electron density distribution, 0,(x),/2= 1,2,..., of 
many kinds of atoms differs by a factor, which may be 

assumed to be constant for the purposes of structure 
analysis. There are therefore many crystal structures, 
whose scattering density function: 

p q(u) 
e(x)= ~ ~ eu(x-xuv) (la) 

/~=I v=l 

can be written approximately in the form: 
p q(u) 

Q(X)= ~ ~ f ,  fl(X--X,~), (lb) 
/~=1 v=l 

where fl(x) is a function characteristic of the shape of 
the atoms of the structure, p equals the number of 
different kinds of atoms, f ,  and q(#) describe the scat- 
tering density and the number of atoms of kind /~, 
respectively, and x,~ denotes the position of the vth 
atom of the #th kind. 

If one introduces a distribution: 

p q(u) 
z(x)= ~ ~ f u 6 ( x -  xuv) (2) 

#=1 v=l 

with a scattering density concentrated at the points 
xuv, one can express Q as the convolution of • and fl: 



366 A STRUCTURE FACTOR EQUATION FOR POINT SCATTERERS 

4=/3 . z. (3) 
Hence, if we denote by F(h, 4) and F(h, z) the structure 
factors of 4 and z and by F(h, 4.) and F(h,/3) the form 
factors of 4. and/3 at lattice point h, respectively, we 
have 

F(h, 4) = F(h,/3)F(h, z) (4a) 

F(h, 4,) = f uF(h, fl) . (4b) 

This means that we can transform any structure-factor 
relation which is valid for a structure built up by non- 
penetrating scatterers with an electron density distri- 
bution f , /3(x-x, ) ,  # =  1,2,... p, into a structure-factor 
relation valid for a structure consisting of point scat- 
terers with a known minimum distance, and vice versa. 

We will now apply the formalism to derive structure- 
factor equations of convolution type for the specified 
case. 

The generating, locally defined mappings F~(4) to 
derive the equations are linear combinations of the 
kind D~a4Dvz4, v= l ,2 , . . . ,  where D~  and D~2 are 
differential operators (Rothbauer, 1975). We will here 
restrict ourselves to the case 

Fv(4) = Dv14Dv24 • (5a) 

The direction derivative of 

Q(x)= 1/V ~ F(m,4) exp ( -  2r~imx) 
in 

along v is 

d4(x)/dv = 1/V ~ ( -  2rcimv)F(m, 4) exp ( -  2zcimx). 
in 

Taking into account higher and mixed derivatives 
along different vectors v j, j =  1,2,..., we see that the 
Fourier sum of Dr4 must be of the kind 

D~(x) = 1/V~ G(m)F(m, 4) exp (--2z~imx), 
in 

where G(m) is a polynomial in mvx,mv2,.... The struc- 
ture factor of F~(4) is then given by: 

F[h,r~(4)] 
= 1 /V~  G~(m)G~2(h-m)F(m,4)V(h-m,4). (5b) 

HI 

The essential property of G(m) we will make use of is 
that the basis (German: Triiger) of the Fourier transform 
of G(m)F(m,/3) is not more extensive than the basis of/3. 

From (4b) we obtain: 

F[h, r~(O,)] : f  2uF[h, F~(fl)]. (6) 

The system of equations: 

F(h,4,) = Z a~F[h,r~(4.)] 
v 

= ~  2 avf,F[h,F~(/3)], # =  1,,2,...,p, 
v 

does not allow for a solution for the coefficients a~ 
introduced by Woolfson (1958), since for any two 
mappings FI and /"2 with the required properties (5) 

F[h,r,(4.)]F[h, r2(/3)] = F[h, r2(4.)]F[h,r,(/3)] , (7) 
as follows from (6). This means, that an equation of 
type" 

F(h)= ~ A(h,m)F(m)F(h-m) 
m 

(Rothbauer, 1976), cannot be deduced in this case. 
But we can obtain another type of structure-factor 
equation. The parts, f,/3(x-xuv), of the scattering 
density function, 4(x), are assumed to be non-over- 
lapping. Therefore (7) is also valid for the whole 
scattering-density function: 

F[h, F1(4)] F [h, F2(/3)] - F[h, F2(4)] F [h, F 1 (/3)-] = 0. 

Substituting (5) we obtain: 

0= ~ { G l l(m)G12(h-m)F[h, r2(/3)] 
m 

-G21(m)G22(h-m)F[h, rl(/3)]}F(m,e)F(h-m,4). (8) 

The Fourier transform of G.v(m)F(m,/3) is a function 
/3.v with the property" 

F(m,/3,~) = G,,,(m)F(m,/3). (9) 

From (5) we have: 

r [h ,  Fu(/3)] = F(h,/3,a/3u2). (10) 

Substituting (4a), (9) and (10) into (8) we obtain the 
structure factor equation for the case of point scatterers 
with known minimum distance: 

0 =  ~ [F(m,/311)F(h-m,/3~2)F(h,/32~/322) 
nl 

- F(m,/321)F(h-m,/322)F(h,/311/312)] F(m, z )F (h -m,  z). 
(11) 

The minimum distance between the point scatterers 
limits the extent of the functions/3u~. We notice that the 
derivation of the convolution-type equation (11) is 
similar to that for the case of spherical symmetric parts 
(Rothbauer, 1975). In both cases we have a degenerate 
solution of the system of equations: 

F[h,F0(4.)] = E  avF[h,F~(4.)], /~= 1,2,.. . ,p, 

with specific types of generating mappings, F, which 
are in the present case defined by (5). 

We can also deduce (11) in a somewhat simpler way 
without making explicit use of generating mappings, 
F, and the usual formalism of deriving structure- 
factor equations. 

From (2) and (3) we have" 

(/3jl * T) (/3j2 * T)= E Ef . fa /3 j l (X - -X .v ) /3 j2 (X- -Xa~) ,  
/~v ~,y 

If the bases of the functions/3 are not more extensive 
than a sphere of diameter equal to the minimum dis- 
tance between the point scatterers, the above equation 
becomes" 

2 (/3ji * z) (/3~2 * z)= ~fu/3ja(x--x,,)fls2(x--xuv) 
/zv 

and hence 

( /3 j l  * T ) ( / 3 j 2  * T ) = ( / 3 j l / 3 j 2 )  * [ E . f 2 ~ (  x -  X . v ) ]  • 
. v  
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The Fourier transform of this is: 

V[h,(fljl * Z)(flj2 * Z)] 
= F(h, f l j l f l j2)[Zf  2 exp (2nihx,~)]. 

/~v 

Eliminating ~ f ]  exp (2nihxu~) from two equations of 
this kind with j =  1 and j - -2 ,  respectively, we obtain: 

0=F[h,(flXl * T) (ill2 * z)]F(h, flzlflz2) 
-- F[-h,(f121 * z) (fl22 * z)]F(h, flllf112). 

Substituting 

F[h,(fljl * z)(flj2 * z)] 
= 1 / V ~  F(m, f l j l )V (h -m ,  f l j z )F(m,z)F(h-m,z)  

I l l  

we obtain again equation (11). 
The functions fl of this equation can be chosen ar- 

bitrarily with the only restriction that their bases are 
not allowed to be more extensive than a sphere of 
diameter equal to the minimum distance of the point 
scatterers. Therefore, the knowledge of the minimum 
atomic distance is essential for the formulation of (11), 
whereas this information is irrelevant for the formula- 
tion of the matrix equations for a structure consisting 
of point scatterers (Rothbauer, 1974). 

We may transform Sayre's (1952) equation by (4) 
into a structure-factor equation for structures consisting 
of identical point scatterers with a known minimum 
distance, and obtain: 

F(h, fl)F(h) 
= A ( h ) ~ F ( m ,  f l )F(h-m,  fl)F(m)F(h-m) (lZa) 

m 

A(h)= F(h, f l ) /[~ F(m, f l )F(h -m,  fl)] , (12b) 
m 

where fl is an arbitrary density function not more ex- 
tensive than a sphere with the diameter of the known 
minimum distance. While (11) is valid for a structure 
consisting of arbitrary different point scatterers, (12) 
is valid for a structure consisting of identical point 
scatterers. 

In those cases where structure analysis can be 
reduced to the localization of point scatterers, all 
distance vectors between the scattering centres can in 
principle be obtained from a Patterson map, provided 
one has enough intensities to calculate a resolved one, 
and provided there is additional information, e.g. 
fu>0,  # = 1,2,..., which excludes the possibility that 
Patterson peaks may annihilate each other. In par- 
ticular, the minimum distance can be obtained in this 
case from the empty region of the Patterson map 

around the zero point, and a necessary and sufficient 
condition for the minimum distance can be formulated 
in terms of intensities as was shown by Goedkoop, 
MacGillavry & Pepinsky (1951). Hence the informa- 
tion about minimum distance does not add constraints 
to the phases that are not already contained in the 
knowledge of the lattice constants, of a sufficient 
number of intensities and that the structure under 
consideration consists of point scatterers with f , > 0 .  

In practice, one mostly cannot get enough intensi- 
ties from a diffraction experiment to calculate a re- 
solved Patterson map, and in this situation the knowl- 
edge of the minimum distance becomes more im- 
portant in structure analysis as fewer intensities are 
known. This may be shown by the following example. 

Suppose we have a cubic crystal with lattice con- 
stant a consisting of point scatterers with f ,  > 0. Now, 
if we know in addition that the minimum distance 
exceeds (~-)1/2a, we can conclude immediately that the 
elementary cell contains only one atom and that all the 
phases of the invariants must be zero. To complete the 
structure analysis in this case, we have to determine the 
unknown scattering amplitude of this atom, which may 
be done by measuring the intensity of only one reflex- 
ion on an absolute scale. 

Besides the additional restriction which the knowl- 
edge of the minimum atomic distance may impose on 
the phases, this kind of a priori information about 
direct space is of value for structure analysis because 
it can be translated, in the case of point scatterers, in 
a simple way into structure factor equations e.g. equa- 
tions (11) and (12). In the more general theory of struc- 
ture-factor equations dealing with continuous scat- 
tering-density functions, the information about the 
minimum distance must be replaced by knowledge of 
the non-overlapping of the atoms. 

The author thanks Mr H. D. Bartunik, Grenoble, 
for helpful comments. The work was supported by the 
Bundesministerium fiir Forschung und Technologie. 
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